Navegación |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Aorende computacion. Sobre codigo Binario |
|
|
Código Binario Decimal Codificado (BCD o BDC)
El BCD (el binario decimal codificado) es una forma directa asignada a un equivalente binario. Es posible asignar cargas a los bits binarios de acuerdo a sus posiciones. Las cargas en el código BCD son 8, 4, 2, 1.
Ejemplo:
Para representar el digito decimal 6 en código BCD sería:.
0110
Ya que 0 x 8 + 1 x 4 + 1 x 2 ÷ 0+1 = 6.
Es posible asignar cargas negativas a un código decimal, tal como se muestra en el código 8, 4, -2, -1. En esta caso la combinación de bits 0110 se interpreta como el digito decimal 2, l obtenerse de 0 x 8 + 1 x 4 + 1 x (-2) + 0 x (-1)=2.
Un código decimal que se ha usado en algunos computadores viejos en el código de exceso a 3. Este último es un código sin carga, cuya asignación se obtiene del correspondiente valor en BCD una vez se haya sumado 3.
Los números se representan en computadores digitales en binario o decimal a través de un codigo binario. Cuando se estén especificando los datos, el usuario gusta dar los datos en forma decimal. Las maneras decimales recibidas se almacenan internamente en el computador por medio del código decimal. Cada digito decimal requiere por lo menos cuatro elementos de almacenamiento binario. Los números decimales ses convierten a binarios cuando las operaciones aritméticas se hacen internamente con números representados en binario. Es posible también realizar operaciones aritméticas directamente en decimal con todos los números ya dejados en forma codificada. Por ejemplo, el número decimal 395, cuando se convierte aq binario es igual a 112221211 y consiste en nueve digitos binarios. El mismo número representado alternamente en BCD, ocupa cuatro bits para cada digito decimal para un total de 12 bits:001110010101.
Decimal Binario BCD
395 112221211 001110010101.
En el código BCD: los cuatro primeros bits representan el 3.Los siguientes cuatro representan el 9 y los últimos cuatro el 5.
Es muy importante comprender la diferencia entre conversión de un número decimal binario y la codificación binaria de un número decimal. En cada caso el resultado final es una seria de bits. Los bits obtenidos de la conversión son dígitos binarios. Los bits obtenidos de la codificación son combinaciones de unos ceros arregladas de acuerdo a las reglas del código usado. Por tanto es extremadamente importante tener en cuenta que una serie de unos y ceros en un sistema digital puede algunas veces representar un número binario y otras veces representar alguna otras cantidad discreta de información como se especifica en un código binario dado. El código BCD por ejemplo, ha sido escogido de tal manera que es un código y una conversión binaria directa siempre y cuando los números decimales sean algún entero entre 0 y 9. Para números mayores que 9, la conversión y la codificación son completamente diferentes. Este concepto es tan importante que vale la pena repetirlo usando otro ejemplo: la conversión binaria del decimal 13 es 1101; la codificación decimal 13 con BCD es 00010011.
Decimal Conversión Binaria Codificación BCD
13 1101 00010011
El código BCD es uno de los más utilizados. Los otros códigos de cuatro bits tienen una característica en común que no se encuentra en BCD. El exceso a 3, el 2, 4, 2, 1 y el 8, 4, -2, -1, son códigos autocomplementarios, esto es que el complemento a 9 del número decimal se obtiene fácilmente cambiando los más por ceros y los ceros por más. Esta propiedad es muy útil cuando se hacen las operaciones aritméticas internamente con números decimales (en código binario) y la sustracción se hace por medio del complemento de 9.
El código biguinario mostrado a continuación es un ejemplo de un código de siete digitos con propiedades de detección de error. Cada dígito decimal consiste de 5 ceros y 2 unos colocados en las correspondientes columnas de carga.
La propiedad de detección de error de este código puede comprenderse si uno se da cuenta de que los sistemas digitales representan el binario 1 mediante una señal específica uno y el binario cero por otra segunda señal específica. Durante la trasmisión de señales de un lugar a otro puede presentarse un error. Uno o más bits pueden cambiar de valor. Un circuito en el lado de recepción puede detectar la presencia de más (o menos) de dos unos y en el caso de que la combinación permitida, se detectará un error.
links:
http://es.kioskea.net/contents/base/binaire.php3
http://www.monografias.com/trabajos3/bcd/bcd.shtml
http://es.wikipedia.org/wiki/C%C3%B3digo_binario
|
|
|
|
|
|
|
Hoy habia 19 visitantes (23 clics a subpáginas) ¡Aqui en esta página!
Licencia de Copyright . © 2010 [Admin] | RSS: Entradas y Comentarios | Modificación de Mimbo theme | Política de privacidad.
|
|
|
|
|
|
|
|